Goto

Collaborating Authors

 Albany


No-Regret Linear Bandits under Gap-Adjusted Misspecification

arXiv.org Artificial Intelligence

This work studies linear bandits under a new notion of gap-adjusted misspecification and is an extension of Liu et al. (2023). When the underlying reward function is not linear, existing linear bandits work usually relies on a uniform misspecification parameter $\epsilon$ that measures the sup-norm error of the best linear approximation. This results in an unavoidable linear regret whenever $\epsilon > 0$. We propose a more natural model of misspecification which only requires the approximation error at each input $x$ to be proportional to the suboptimality gap at $x$. It captures the intuition that, for optimization problems, near-optimal regions should matter more and we can tolerate larger approximation errors in suboptimal regions. Quite surprisingly, we show that the classical LinUCB algorithm -- designed for the realizable case -- is automatically robust against such $\rho$-gap-adjusted misspecification with parameter $\rho$ diminishing at $O(1/(d \sqrt{\log T}))$. It achieves a near-optimal $O(\sqrt{T})$ regret for problems that the best-known regret is almost linear in time horizon $T$. We further advance this frontier by presenting a novel phased elimination-based algorithm whose gap-adjusted misspecification parameter $\rho = O(1/\sqrt{d})$ does not scale with $T$. This algorithm attains optimal $O(\sqrt{T})$ regret and is deployment-efficient, requiring only $\log T$ batches of exploration. It also enjoys an adaptive $O(\log T)$ regret when a constant suboptimality gap exists. Technically, our proof relies on a novel self-bounding argument that bounds the part of the regret due to misspecification by the regret itself, and a new inductive lemma that limits the misspecification error within the suboptimality gap for all valid actions in each batch selected by G-optimal design.


UU-Mamba: Uncertainty-aware U-Mamba for Cardiovascular Segmentation

arXiv.org Artificial Intelligence

Building on the success of deep learning models in cardiovascular structure segmentation, increasing attention has been focused on improving generalization and robustness, particularly in small, annotated datasets. Despite recent advancements, current approaches often face challenges such as overfitting and accuracy limitations, largely due to their reliance on large datasets and narrow optimization techniques. This paper introduces the UU-Mamba model, an extension of the U-Mamba architecture, designed to address these challenges in both cardiac and vascular segmentation. By incorporating Sharpness-Aware Minimization (SAM), the model enhances generalization by targeting flatter minima in the loss landscape. Additionally, we propose an uncertainty-aware loss function that combines region-based, distribution-based, and pixel-based components to improve segmentation accuracy by capturing both local and global features. While the UU-Mamba model has already demonstrated great performance, further testing is required to fully assess its generalization and robustness. We expand our evaluation by conducting new trials on the ImageCAS (coronary artery) and Aorta (aortic branches and zones) datasets, which present more complex segmentation challenges than the ACDC dataset (left and right ventricles) used in our previous work, showcasing the model's adaptability and resilience. We confirm UU-Mamba's superior performance over leading models such as TransUNet, Swin-Unet, nnUNet, and nnFormer. Moreover, we provide a more comprehensive evaluation of the model's robustness and segmentation accuracy, as demonstrated by extensive experiments.


Global versus Local: Evaluating AlexNet Architectures for Tropical Cyclone Intensity Estimation

arXiv.org Artificial Intelligence

Given the destructive impacts of tropical cyclones, it is critical to have a reliable system for cyclone intensity detection. Various techniques are available for this purpose, each with differing levels of accuracy. In this paper, we introduce two ensemble-based models based on AlexNet architecture to estimate tropical cyclone intensity using visible satellite images. The first model, trained on the entire dataset, is called the global AlexNet model. The second model is a distributed version of AlexNet in which multiple AlexNets are trained separately on subsets of the training data categorized according to the Saffir-Simpson wind speed scale prescribed by the meterologists. We evaluated the performance of both models against a deep learning benchmark model called \textit{Deepti} using a publicly available cyclone image dataset. Results indicate that both the global model (with a root mean square error (RMSE) of 9.03 knots) and the distributed model (with a RMSE of 9.3 knots) outperform the benchmark model (with a RMSE of 13.62 knots). We provide a thorough discussion of our solution approach, including an explanantion of the AlexNet's performance using gradient class activation maps (grad-CAM). Our proposed solution strategy allows future experimentation with various deep learning models in both single and multi-channel settings.


Multi-view Deep Subspace Clustering Networks

arXiv.org Artificial Intelligence

Multi-view subspace clustering aims to discover the inherent structure of data by fusing multiple views of complementary information. Most existing methods first extract multiple types of handcrafted features and then learn a joint affinity matrix for clustering. The disadvantage of this approach lies in two aspects: 1) multi-view relations are not embedded into feature learning, and 2) the end-to-end learning manner of deep learning is not suitable for multi-view clustering. Even when deep features have been extracted, it is a nontrivial problem to choose a proper backbone for clustering on different datasets. To address these issues, we propose the Multi-view Deep Subspace Clustering Networks (MvDSCN), which learns a multi-view self-representation matrix in an end-to-end manner. The MvDSCN consists of two sub-networks, \ie, a diversity network (Dnet) and a universality network (Unet). A latent space is built using deep convolutional autoencoders, and a self-representation matrix is learned in the latent space using a fully connected layer. Dnet learns view-specific self-representation matrices, whereas Unet learns a common self-representation matrix for all views. To exploit the complementarity of multi-view representations, the Hilbert--Schmidt independence criterion (HSIC) is introduced as a diversity regularizer that captures the nonlinear, high-order inter-view relations. Because different views share the same label space, the self-representation matrices of each view are aligned to the common one by universality regularization. The MvDSCN also unifies multiple backbones to boost clustering performance and avoid the need for model selection. Experiments demonstrate the superiority of the MvDSCN.


Some geometric and topological data-driven methods in robot motion path planning

arXiv.org Artificial Intelligence

Motion path planning is an intrinsically geometric problem which is central for design of robot systems. Since the early years of AI, robotics together with computer vision have been the areas of computer science that drove its development. Many questions that arise, such as existence, optimality, and diversity of motion paths in the configuration space that describes feasible robot configurations, are of topological nature. The recent advances in topological data analysis and related metric geometry, topology and combinatorics have provided new tools to address these engineering tasks. We will survey some questions, issues, recent work and promising directions in data-driven geometric and topological methods with some emphasis on the use of discrete Morse theory.


Stochastic Online AUC Maximization Department of Mathematics and Statistics SUNY at Albany, Albany, NY, 12222, USA Department of Computer Science SUNY at Albany, Albany, NY, 12222, USA

Neural Information Processing Systems

Area under ROC (AUC) is a metric which is widely used for measuring the classification performance for imbalanced data. It is of theoretical and practical interest to develop online learning algorithms that maximizes AUC for large-scale data. A specific challenge in developing online AUC maximization algorithm is that the learning objective function is usually defined over a pair of training examples of opposite classes, and existing methods achieves on-line processing with higher space and time complexity. In this work, we propose a new stochastic online algorithm for AUC maximization. In particular, we show that AUC optimization can be equivalently formulated as a convex-concave saddle point problem. From this saddle representation, a stochastic online algorithm (SOLAM) is proposed which has time and space complexity of one datum. We establish theoretical convergence of SOLAM with high probability and demonstrate its effectiveness on standard benchmark datasets.


DsDm: Model-Aware Dataset Selection with Datamodels

arXiv.org Artificial Intelligence

When selecting data for training large-scale models, standard practice is to filter for examples that match human notions of data quality. Such filtering yields qualitatively clean datapoints that intuitively should improve model behavior. However, in practice the opposite can often happen: we find that selecting according to similarity with "high quality" data sources may not increase (and can even hurt) performance compared to randomly selecting data. To develop better methods for selecting data, we start by framing dataset selection as an optimization problem that we can directly solve for: given target tasks, a learning algorithm, and candidate data, select the subset that maximizes model performance. This framework thus avoids handpicked notions of data quality, and instead models explicitly how the learning process uses train datapoints to predict on the target tasks. Our resulting method greatly improves language model (LM) performance on both pre-specified tasks and previously unseen tasks. Specifically, choosing target tasks representative of standard LM problems and evaluating on diverse held-out benchmarks, our selected datasets provide a 2x compute multiplier over baseline methods.


Outlier Robust Adversarial Training

arXiv.org Machine Learning

Supervised learning models are challenged by the intrinsic complexities of training data such as outliers and minority subpopulations and intentional attacks at inference time with adversarial samples. While traditional robust learning methods and the recent adversarial training approaches are designed to handle each of the two challenges, to date, no work has been done to develop models that are robust with regard to the low-quality training data and the potential adversarial attack at inference time simultaneously. It is for this reason that we introduce Outlier Robust Adversarial Training (ORAT) in this work. ORAT is based on a bi-level optimization formulation of adversarial training with a robust rank-based loss function. Theoretically, we show that the learning objective of ORAT satisfies the $\mathcal{H}$-consistency in binary classification, which establishes it as a proper surrogate to adversarial 0/1 loss. Furthermore, we analyze its generalization ability and provide uniform convergence rates in high probability. ORAT can be optimized with a simple algorithm. Experimental evaluations on three benchmark datasets demonstrate the effectiveness and robustness of ORAT in handling outliers and adversarial attacks. Our code is available at https://github.com/discovershu/ORAT.


A Predictive Model of Digital Information Engagement: Forecasting User Engagement With English Words by Incorporating Cognitive Biases, Computational Linguistics and Natural Language Processing

arXiv.org Artificial Intelligence

This study introduces and empirically tests a novel predictive model for digital information engagement (IE) - the READ model, an acronym for the four pivotal attributes of engaging information: Representativeness, Ease-of-use, Affect, and Distribution. Conceptualized within the theoretical framework of Cumulative Prospect Theory, the model integrates key cognitive biases with computational linguistics and natural language processing to develop a multidimensional perspective on information engagement. A rigorous testing protocol was implemented, involving 50 randomly selected pairs of synonymous words (100 words in total) from the WordNet database. These words' engagement levels were evaluated through a large-scale online survey (n = 80,500) to derive empirical IE metrics. The READ attributes for each word were then computed and their predictive efficacy examined. The findings affirm the READ model's robustness, accurately predicting a word's IE level and distinguishing the more engaging word from a pair of synonyms with an 84% accuracy rate. The READ model's potential extends across various domains, including business, education, government, and healthcare, where it could enhance content engagement and inform AI language model development and generative text work. Future research should address the model's scalability and adaptability across different domains and languages, thereby broadening its applicability and efficacy.


Words That Stick: Predicting Decision Making and Synonym Engagement Using Cognitive Biases and Computational Linguistics

arXiv.org Artificial Intelligence

This research draws upon cognitive psychology and information systems studies to anticipate user engagement and decision-making on digital platforms. By employing natural language processing (NLP) techniques and insights from cognitive bias research, we delve into user interactions with synonyms within digital content. Our methodology synthesizes four cognitive biasesRepresentativeness, Ease-of-use, Affect, and Distributioninto the READ model. Through a comprehensive user survey, we assess the model's ability to predict user engagement, discovering that synonyms that accurately represent core ideas, are easy to understand, elicit emotional responses, and are commonly encountered, promote greater user engagement. Crucially, our work offers a fresh lens on human-computer interaction, digital behaviors, and decision-making processes. Our results highlight the promise of cognitive biases as potent indicators of user engagement, underscoring their significance in designing effective digital content across fields like education and marketing.